
COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 12:
File System Implementation

Zhi Wang

Florida State University

Content

• File system structure
• File system implementation
• Directory implementation
• Allocation and free-space management
• Recovery
• Examples: NFS

File-System Structure

• File is a logical storage unit for a collection of related information
• There are many file systems; OS may support several simultaneously

• Linux has Ext2/3/4, Reiser FS/4, Btrfs…
• Windows has FAT, FAT32, NTFS…
• new ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

• File system resides on secondary storage (disks)
• disk driver provides interfaces to read/write disk blocks
• fs provides user/program interface to storage, mapping logical to physical

• file control block – storage structure consisting of information about a file
• File system is usually implemented and organized into layers

• layering can reduce implementation complexity and redundancy
• it may increase overhead and decrease performance

Layered File System

File System Layers

• Device drivers manage disk devices at the I/O control layer
• device driver accepts commands to access raw disk
• command “read drive1, cylinder 72, track 2, sector 10, into memory 1060”
• it converts the command to hardware devices access (i.e., using registers)

• Basic file system provides methods to access physical blocks
• it translates commands like “retrieve block 123” to device driver
• manages memory buffers and caches (allocation, freeing, replacement)

File System Layers

• File organization module understands files, logical address, and physical blocks

• it translates logical block # to physical block #
• it manages free space, disk allocation

• Logical file system understand file system structures (metadata)
• it translates file name into file number, file handle, location by maintaining file control

blocks (inodes in Unix)
• directory management and protection

File-System Implementation

• File-system needs to maintain on-disk and in-memory structures
• on-disk for data storage, in-memory for data access

• On-disk structure has several control blocks
• boot control block contains info to boot OS from that volume

• only needed if volume contains OS image, usually first block of volume
• volume control block (e.g., superblock) contains volume details

• total # of blocks, # of free blocks, block size, free block pointers or array
• directory structure organizes the directories and files

• file names and layout
• per-file file control block contains many details about the file

• inode number, permissions, size, dates

A Typical File Control Block

In-Memory File System Structures

• In-memory structures reflects and extends on-disk structures
• it provides API for applications to access files

• e.g., open file tables to store the currently open file

• it create a uniform name space for all the files
• e.g., partitions/disks can be mounted into this name space

• buffering and caching to improve performance and bridge speed mismatch

• e.g., in-memory directory cache to speed up file search

In-Memory File System Structures

Virtual File Systems

• VFS provides an object-oriented way of implementing file systems
• OS defines a common interface for FS, all FSes implement them
• system call is implemented based on this common interface

• it allows the same syscall API to be used for different types of FS
• VFS separates FS generic operations from implementation details

• implementation can be one of many FS types, or network file system
• OS can dispatches syscalls to appropriate FS implementation routines

Virtual File System

Virtual File System Example

• Linux defines four VFS object types:
• superblock: defines the file system type, size, status, and other metadata
• inode: contains metadata about a file (location, access mode, owners…)
• dentry: associates names to inodes, and the directory layout
• file: actual data of the file

• VFS defines set of operations on the objects that must be implemented
• the set of operations is saved in a function table

Directory Implementation

• Linear list of file names with pointer to the file metadata
• simple to program, but time-consuming to search (e.g., linear search)

• could keep files ordered alphabetically via linked list or use B+ tree
• Hash table: linear list with hash data structure to reduce search time

• collisions are possible: two or more file names hash to the same location

Disk Block Allocation

• Files need to be allocated with disk blocks to store data
• different allocation strategies have different complexity and performance

• Many allocation strategies:
• contiguous
• linked
• indexed
• …

Contiguous Allocation

• Contiguous allocation: each file occupies set of contiguous blocks
• best performance in most cases
• simple to implement: only starting location and length are required

• Contiguous allocation is not flexible
• how to increase/decrease file size?

• need to know file size at the file creation?
• external fragmentation

• how to compact files offline or online to reduce external fragmentation
• appropriate for sequential disks like tape

• Some file systems use extent-based contiguous allocation
• extent is a set of contiguous blocks
• a file consists of extents, extents are not necessarily adjacent to each other

Contiguous Allocation

Linked Allocation

• Linked allocation: each file is a linked list of disk blocks
• each block contains pointer to next block, file ends at nil pointer
• blocks may be scattered anywhere on the disk (no external fragmentation)
• locating a file block can take many I/Os and disk seeks

• FAT (File Allocation Table) uses linked allocation

Linked Allocation

File-Allocation Table (FAT)

Indexed Allocation

• Indexed allocation: each file has its own index blocks of pointers to its
data blocks

• index table provides random access to file data blocks
• no external fragmentation, but overhead of index blocks
• allows holes in the file

• Need a method to allocate index blocks
• linked index blocks
• multiple-level index blocks (e.g., 2-level)
• combined scheme

Indexed Allocation

Combined Scheme: UNIX UFS

Allocation Methods
• Best allocation method depends on file access type

• contiguous is great for sequential and random

• linked is good for sequential, not random

• indexed (combined) is more complex

• single block access may require 2 index block reads then data block read
• clustering can help improve throughput, reduce CPU overhead
• cluster is a set of contiguous blocks

• Disk I/O is slow, reduce as many disk I/Os as possible
• Intel Core i7 extreme edition 990x (2011) at 3.46Ghz = 159,000 MIPS
• typical disk drive at 250 I/Os per second

• 159,000 MIPS / 250 = 630 million instructions during one disk I/O
• fast SSD drives provide 60,000 IOPS

• 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

Free-Space Management

• File system maintains free-space list to track available blocks/clusters
• Many allocation methods:

• bit vector or bit map
• linked free space
• …

Bitmap Free-Space Management

• Use one bit for each block, track its allocation status
• relatively easy to find contiguous blocks
• bit map requires extra space

• example: 	 block size = 4KB = 212 bytes

	 	 disk size = 240 bytes (1 terabyte)

	 	 n = 240/212 = 228 bits (or 256 MB)

	 	 if clusters of 4 blocks -> 64MB of memory

…!

0! 1! 2! n-1!

bit[i] =!

!
"
#
!

1 ! block[i] free!
0 ! block[i] occupied!

Linked Free Space

• Keep free blocks in linked list
• no waste of space, just use the memory in the free block for pointers
• cannot get contiguous space easily
• no need to traverse the entire list (if # free blocks recorded)

Linked Free Space

Linked Free-Space

• Simple linked list of free-space is inefficient
• one extra disk I/O to allocate one free block (disk I/O is extremely slow)

• allocating multiple free blocks require traverse the list
• difficult to allocate contiguous free blocks

• Grouping: use indexes to group free blocks
• store address of n-1 free blocks in the first free block, plus a pointer to the

next index block
• allocating multiple free blocks does not need to traverse the list

• Counting: a link of clusters (starting block + # of contiguous blocks)
• space is frequently contiguously used and freed
• in link node, keep address of first free block and # of following free blocks

File System Performance

• File system efficiency and performance dependent on:
• disk allocation and directory algorithms
• types of data kept in file’s directory entry
• pre-allocation or as-needed allocation of metadata structures
• fixed-size or varying-size data structures
• …

• To improve file system performance:
• keeping data and metadata close together
• use cache: separate section of main memory for frequently used blocks
• use asynchronous writes, it can be buffered/cached, thus faster

• cannot cache synchronous write, writes must hit disk before return
• synchronous writes sometimes requested by apps or needed by OS

• free-behind and read-ahead: techniques to optimize sequential access

Page Cache and MMIO

• OS has different levels of cache:
• a page cache caches pages for MMIO, such as memory mapped files
• file systems uses buffer (disk) cache for disk I/O

• memory mapped I/O may be cached twice in the system
• A unified buffer cache uses the same page cache to cache both memory-mapped

pages and disk I/O to avoid double caching

Recovery

• File system needs consistency checking to ensure consistency
• compares data in directory with some metadata on disk for consistency
• fs recovery an be slow and sometimes fails

• File system recovery methods
• backup
• log-structured file system

Log Structured File Systems

• In LSFS, metadata for updates sequentially written to a circular log
• once changes written to the log, it is committed, and syscall can return

• log can be located on the other disk/partition
• meanwhile, log entries are replayed on the file system to actually update it

• when a transaction is replayed, it is removed from the log
• a log is circular, but un-committed entries will not be overwritten
• garbage collection can reclaim/compact log entries

• upon system crash, only need to replay transactions existing in the log

Example: Network File System (NFS)

• NFS is a software system for accessing remote files
• support both LAN and WAN
• implementation is a part of the Solaris and SunOS

• for Sun workstations, using UDP and Ethernet
• NFS transparently enables sharing of FS on independent machines

• each machine can have its own (different) file system
• a remote directory is mounted over (and cover) a local file system directory

• mounting operation is not transparent
• the host name of the remote directory has to be provided

• designed for heterogeneous environment with the help of RPC
• different machine architecture, OS, or network architecture

• to improve performance, NFS employs many caches
• directory name cache, file block cache, file attribute cache…

NFS Client and Servers

After Client Mounts

NFS Mount Protocol

• Mount establishes initial connection between server and client
• mount request includes the server name and remote directory name
• mount request is mapped to a RPC to the server
• server has an export list

• local file systems that server exports for mounting
• names of machines that are permitted to mount them

• if request allowed by the export list the server returns a file handle
• a file handle is a number to identify the mounted directory within server

• A remote FS can be mounted over a local FS, or a remote FS (cascading mount)

NFS Protocol

• NFS provides a set of RPCs for remote file operations
• read and write files
• read/search a set of directory entries
• manipulate links and directories
• access file attributes

• NFS servers are stateless
• each request has to provide a full set of arguments (new NFS v4 is stateful)

• Updates must be committed to disk before server returns to the client
• caching is not allowed

• NFS protocol does not provide concurrency-control mechanisms

NFS Remote Operations

• One-to-one correspondence between UNIX syscalls and NFS RPCs
• except opening and closing files that needs special parameter

• NFS employs buffers/caches to reduce network overhead
• file-blocks cache: caches data of a file
• file-attribute cache: cache the file attributes
• cached data can only be used if fresh (check with the server)

Integration of NFS

• Syscall API is based on virtual file system (VFS), no need to change
• open, read, write, and close calls, and file descriptors

• VFS layer dispatches file access to NFS
• VFS calls the NFS protocol procedures for remote requests
• VFS does not know/care whether file system is local or remote

• NFS service layer actually implements the NFS protocol

Integration of NFS

End of Chapter 11

