COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 12:
File System Implementation

Zhi Wang
Florida State University

Content

File system structure
File system implementation
Directory implementation
- Allocation and free-space management
Recovery

Examples: NFS

File-System Structure

- File is a logical storage unit for a collection of related information
- There are many file systems; OS may support several simultaneously
- Linux has Ext2/3/4, Reiser FS/4, Btrfs...
- Windows has FAT, FAT32, NTFS...
- new ones still arriving - ZFS, GoogleFS, Oracle ASM, FUSE
- File system resides on secondary storage (disks)
- disk driver provides interfaces to read/write disk blocks
- fs provides user/program interface to storage, mapping logical to physical
- file control block — storage structure consisting of information about a file
- File system is usually implemented and organized into layers
- layering can reduce implementation complexity and redundancy

- It may increase overhead and decrease performance

Layered File System

application programs

ﬂ

logical file system

b

file-organization module

v

basic file system

b

/O control

b

devices

File System Layers

Device drivers manage disk devices at the I/0 control layer
- device driver accepts commands to access raw disk
- command “read drivel, cylinder 72, track 2, sector 10, into memory 1060”
it converts the command to hardware devices access (i.e., using registers)
Basic file system provides methods to access physical blocks
it translates commands like “retrieve block 123" to device driver

manages memory buffers and caches (allocation, freeing, replacement)

File System Layers

- File organization module understands files, logical address, and physical blocks
- It translates logical block # to physical block #
- It manages free space, disk allocation

- Logical file system understand file system structures (metadata)

- It translates file name into file number, file handle, location by maintaining file control
blocks (inodes in Unix)

- directory management and protection

File-System Implementation

File-system needs to maintain on-disk and in-memory structures
-+ on-disk for data storage, in-memory for data access
- On-disk structure has several control blocks
boot control block contains info to boot OS from that volume
- only needed if volume contains OS image, usually first block of volume
- volume control block (e.g., superblock) contains volume details
- total # of blocks, # of free blocks, block size, free block pointers or array
- directory structure organizes the directories and files
- file names and layout
per-file file control block contains many details about the file

- Inode number, permissions, size, dates

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

IN-Memory File System Structures

In-memory structures reflects and extends on-disk structures
- It provides API for applications to access files
-+ e.g., open file tables to store the currently open file
- It create a uniform name space for all the files
- e.Q., partitions/disks can be mounted into this name space
- buffering and caching to improve performance and bridge speed mismatch

-+ e.g., In-memory directory cache to speed up file search

In-Memory File System Structures

directory structure
open (file name) .
directory structure

file-control block

user space kernel memory secondary storage
(a)
index
— /
L data blocks
-
read (index) T ——
per-process system-wide file-control block
open-file table open-file table

user space kernel memory secondary storage

(b)

Virtual File Systems

- VFS provides an object-oriented way of implementing file systems
- OS defines a common interface for FS, all FSes implement them
- system call is implemented based on this common interface
- it allows the same syscall APl to be used for different types of FS
- VFS separates FS generic operations from implementation details
- implementation can be one of many FS types, or network file system

-+ OS can dispatches syscalls to appropriate FS implementation routines

Virtual File System

file-system interface

Y

VFES interface

local file system
type 1

Y

local file system
type 2

|

remote file system
type 1

A\

S

network

Virtual File System Example

- Linux defines four VFS object types:

superblock: defines the file system type, size, status, and other metadata
iInode: contains metadata about a file (location, access mode, owners...)
dentry: associates names to inodes, and the directory layout

file: actual data of the file

VFS defines set of operations on the objects that must be implemented

the set of operations is saved in a function table

struct file operations {

int (*1lseek) (struct inode *, struct file *, off t, int);

int (*read) (struct inode ¥*, struct file *, char *, int):;

int (*write) (struct inode ¥, struct file ¥*, const char *, int):

int (*readdir) (struct inode *, struct file ¥, wvoid *, filldir t):;
int (*select) (struct inode *, struct file *, int, select table ¥);
int (¥*ioctl) (struct inode *, struct file %, unsigned int, unsigned long):;
int (*mmap) (struct inode *, struct file *, struct vm area struct ¥*);
int (¥*open) (struct inode ¥*, struct file ¥);

void (*release) (struct inode *, struct file ¥*);

int (*¥fsync) (struct inode *, struct file ¥);

int (*¥fasync) (struct inode *, struct file *, int);

int
int

(*check media change) (kdev_t dev);
(*revalidate) (kdev_t dev);

Directory Implementation

Linear list of file names with pointer to the file metadata

+ simple to program, but time-consuming to search (e.g., linear search)
- could keep files ordered alphabetically via linked list or use B+ tree

Hash table: linear list with hash data structure to reduce search time

- collisions are possible: two or more file nhames hash to the same location

Disk Block Allocation

- Files need to be allocated with disk blocks to store data

- different allocation strategies have different complexity and performance
- Many allocation strategies:

+contiguous

- linked

* Indexed

Contiguous Allocation

- Contiguous allocation: each file occupies set of contiguous blocks
best performance in most cases
- simple to implement: only starting location and length are required
- Contiguous allocation is not flexible
- how to increase/decrease file size”?
-+ need to know file size at the file creation?
- external fragmentation
- how to compact files offline or online to reduce external fragmentation
- appropriate for sequential disks like tape
- Some file systems use extent-based contiguous allocation
-+ extent is a set of contiguous blocks

- a file consists of extents, extents are not necessarily adjacent to each other

Contiguous Allocation

et . directory
cout file start length
0 1 2 3 count 0 2
f tr 14 3
4l | S| | peisiag mail 19 6

12 |13 |14 115

1617118119
mail
208|240 BN 22|88 23

24| 25| |26 127
list
2811|2880 NISil

Linked Allocation

- Linked allocation: each file is a linked list of disk blocks
-+ each block contains pointer to next block, file ends at nil pointer
- blocks may be scattered anywhere on the disk (no external fragmentation)
- locating a file block can take many I/Os and disk seeks

- FAT (File Allocation Table) uses linked allocation

Linked Allocation

P e directory
S Bl file start end
jeep 9 25
0 15l 2 3

//
12 A3 [14f |15

1617 18] |19

20 21742 23

24| |25[-1]26[|27

28| |29 [30[|31

File-Allocation Table (FAT)

directory entry

test ceoe 217
name start block

—» 217 618

339 NI

618 339 |

no. of disk blocks —1

FAT

Indexed Allocation

Indexed allocation: each file has its own index blocks of pointers to its
data blocks

- Index table provides random access to file data blocks
* no external fragmentation, but overhead of index blocks
- allows holes in the file

Need a method to allocate index blocks
- linked index blocks
- multiple-level index blocks (e.qg., 2-level)

- combined scheme

Indexed Allocation

directory
file index block
jeep 19

Combined Scheme: UNIX UFS

mode

owners (2)

timestamps (3)

» data

size block count

—» data

—>» data

direct blocks .

—» data

— data

i
single indirect ——— data

—>| data
double indirect q

—— data

triple indirect » » data

——» data

Allocation Methods

- Best allocation method depends on file access type
- contiguous is great for sequential and random
- linked is good for sequential, not random
- indexed (combined) is more complex
- single block access may require 2 index block reads then data block read
- clustering can help improve throughput, reduce CPU overhead
- cluster is a set of contiguous blocks
- Disk /O is slow, reduce as many disk [/Os as possible
- Intel Core i7 extreme edition 990x (2011) at 3.46Ghz = 159,000 MIPS
- typical disk drive at 250 |/Os per second
- 159,000 MIPS / 250 = 630 million instructions during one disk |/O
- fast SSD drives provide 60,000 IOPS
- 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk 1/O

Free-Space Management

File system maintains free-space list to track available blocks/clusters
Many allocation methods:

oIt vector or bit map

iInked free space

Bitmap Free-Space Management

- Use one bit for each block, track its allocation status
- relatively easy to find contiguous blocks
- bit map requires extra space
- example: block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n=2"72""= 2% bits (or 256 MB)

if clusters of 4 blocks -> 64MB of memory

_ 1 - block][/] free
bit[/] =
0 -> block]i] occupied

Linked Free Space

Keep free blocks in linked list
- NO waste of space, just use the memory in the free block for pointers
- cannot get contiguous space easily

- NO need to traverse the entire list (if # free blocks recorded)

Linked Free Space

free-space list head

12| |13 _[14[|15

16| |17] (18] [19

20| |21 |22/ |23

24 |25 |26] |27 R

28| |29 |30 |31

Linked Free-Space

- Simple linked list of free-space is inefficient
- one extra disk /O to allocate one free block (disk I/0 is extremely slow)
- allocating multiple free blocks require traverse the list
- difficult to allocate contiguous free blocks
- Grouping: use indexes to group free blocks

- store address of n-1 free blocks in the first free block, plus a pointer to the
next index block

- allocating multiple free blocks does not need to traverse the list
- Counting: a link of clusters (starting block + # of contiguous blocks)
+ space is frequently contiguously used and freed

- In link node, keep address of first free block and # of following free blocks

File System Performance

File system efficiency and performance dependent on:
- disk allocation and directory algorithms
- types of data kept in file’s directory entry
pre-allocation or as-needed allocation of metadata structures
- fixed-size or varying-size data structures

- To improve file system performance:
keeping data and metadata close together
use cache: separate section of main memory for frequently used blocks
use asynchronous writes, it can be buffered/cached, thus faster
-+ cannot cache synchronous write, writes must hit disk before return
- synchronous writes sometimes requested by apps or needed by OS
- free-behind and read-ahead: techniques to optimize sequential access

Page Cache and MMIO

- OS has different levels of cache:
- a page cache caches pages for MMIO, such as memory mapped files
- file systems uses buffer (disk) cache for disk 1/0O
- memory mapped /O may be cached twice in the system

- A unified buffer cache uses the same page cache to cache both memory-mapped
pages and disk I/0O to avoid double caching

. I/O using .
memory-mapped I/O read() and write() memory-mapped /O read(l/)oall:l'l(sjlr\]l\%’ite()

page cache \ /
\ buffer cache

buffer cache I

file system

file system

Recovery

File system needs consistency checking to ensure consistency
- compares data in directory with some metadata on disk for consistency
- fs recovery an be slow and sometimes fails
File system recovery methods
backup

log-structured file system

Log Structured File Systems

In LSFS, metadata for updates sequentially written to a circular log
+ once changes written to the log, it is committed, and syscall can return
- log can be located on the other disk/partition
- meanwhile, log entries are replayed on the file system to actually update it
- when a transaction is replayed, it is removed from the log
- alog is circular, but un-committed entries will not be overwritten
+ garbage collection can reclaim/compact log entries

* upon system crash, only need to replay transactions existing in the log

—xample: Network File System (NFS)

- NFS is a software system for accessing remote files
- support both LAN and WAN
- Implementation is a part of the Solaris and SunOS
- for Sun workstations, using UDP and Ethernet
- NFS transparently enables sharing of FS on independent machines
- each machine can have its own (different) file system
-+ a remote directory is mounted over (and cover) a local file system directory
- mounting operation is not transparent
- the host name of the remote directory has to be provided
- designed for heterogeneous environment with the help of RPC
- different machine architecture, OS, or network architecture
- to improve performance, NFS employs many caches
- directory name cache, file block cache, file attribute cache...

NFS Client and Servers

usr usr usr

local shared

After Client Mounts

usr usr

local local

NFS Mount Protocol

Mount establishes initial connection between server and client
- mount request includes the server name and remote directory name
- mount request is mapped to a RPC to the server
- server has an export list
- local file systems that server exports for mounting
- names of machines that are permitted to mount them
- if request allowed by the export list the server returns a file handle
- a file handle is a number to identity the mounted directory within server

- A remote FS can be mounted over a local FS, or a remote FS (cascading mount)

NFS Protocol

NFS provides a set of RPCs for remote file operations
read and write files
read/search a set of directory entries
manipulate links and directories
- access file attributes
NFS servers are stateless
- each request has to provide a full set of arguments (new NFS v4 is stateful)
Updates must be committed to disk before server returns to the client
- caching is not allowed

NFS protocol does not provide concurrency-control mechanisms

NFS Remote Operations

- One-to-one correspondence between UNIX syscalls and NFS RPCs
- except opening and closing files that needs special parameter

- NFS employs buffers/caches to reduce network overhead
- file-blocks cache: caches data of a file

- file-attribute cache: cache the file attributes

- cached data can only be used if fresh (check with the server)

Integration of NFS

- Syscall APl is based on virtual file system (VFS), no need to change
- open, read, write, and close calls, and file descriptors

- VFS layer dispatches file access to NFS

- VES calls the NFS protocol procedures for remote requests

- VES does not know/care whether file system is local or remote

- NFS service layer actually implements the NFS protocol

Integration of NFS

client

server

system-calls interface

!

VFS interface

!

4

!

other types of UNIX file NFS
file systems system client
RPC/XDR
-
disk l

—> VFSinterface
NFS UNIX file
server system
RPC/XDR
—
I disk

network

—nd of Chapter 11

